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Previous applications of QUICK for the discretization of convective 
transport terms in finite-volume calculation procedures have failed to 
employ a rigorous and systematic approach for consistently deriving 
this finite difference scheme. Instead, earlier formulations have been 
established numerically, by trial and error. The new formulation for 
QUICK presented here is obtained by requiring that it satisfy four rules 
that guarantee physically realistic numerical solutions having overall 
balance. Careful testing performed for the wall-driven square enclosure 
flow configuration shows that the consistently derived version of 
QUICK is more stable and converges faster than any of the formulations 
previously employed. This testing includes the relative evaluation of 
boundary conditions approximated by second- and third-order finite- 
difference schemes as well as calculations performed at higher 
Reynolds numbers than previously reported. 0 1992Academic PWS. IIIC. 

1. INTRODUCTION 

Soon after Leonard’s [l] publication of the QUICK 
scheme for the discretization of convective transport terms, 
a series of papers appeared in the literature (Leschziner [2], 
Han et al. [3], Pollard and Siu [4], Freitas et al. [S], Perng 
and Street [6]) addressing the practical implementation 
and testing of the scheme in flows more complex than those 
originally inspected by Leonard [ 11. Among the configura- 
tions closely examined by most of these authors have been 
the 2D and 3D wall-driven enclosure flows. Certainly, in the 
2D case, this configuration has become a standard for the 
testing of numerical calculation procedures (see Ghia et al. 
[7], Schreiber and Keller [S], and Choi et al. [o]) even 
though it represents the idealization of a flow whose practi- 
cal realization seems improbable (see Koseff and Street 
[lo] and the discussion therein by Humphrey). 

In spite of its impracticability the 2D wall-driven enclo- 
sure flow represents an excellent test case for evaluating 
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convective differencing schemes. This is because of the 
large streamline-to-grid skewness present over most of the 
flow (on a rectangular grid) and the existence of several 
relatively large, recirculation regions where diffusion and 
convection transport terms are of comparable magnitude, 
thus requiring a finite-difference representation of the latter 
at least as accurate as for the former. 

The QUICK scheme employs a three-point upstream- 
weighted quadratic interpolation technique within the 
context of a control-volume approach for calculating on a 
staggered grid. Leonard [l] has shown that this procedure 
has greater formal accuracy than the central difference 
scheme and retains the basic stable convective sensitivity 
property that is characteristic of upstream-weighted 
schemes. Figure 1 provides the basis for a 1D control 
volume formulation for the transport of the scalar quantity 
4. A uniform grid is shown but neither this simplification 
nor the 1D transport assumption precludes the application 
of the findings of our investigation to 2D and 3D flows on 
nonuniform grids. By reference to Fig. 1, control volume 
surface values for 4 are obtained by fitting a parabola to the 
values of 4 at three consecutive nodes: the two nodes 
located on either side of the surface of interest, plus the 
adjacent node on the upstream side. In this way, Leonard 
[l] findsfor u,>O, u,>O, 

be= lP(di+ 4i+l)- 1/8(~5-1-24i+ 4itl) 

dw = 1/2(4i- 1+ 4i) - lP(4i- 2 - 2di- 1 + 4i). 

(1) 

Similar expressions can be found when u, < 0 and u, < 0, 
and they can all be interpreted as linear interpolations for 4, 
and 4, corrected by the inclusion of terms proportional to 
the respective upstream-weighted curvatures. 

As in the numerical studies mentioned above, we wish to 
use QUICK to calculate accurate values of the dependent 
variable 4 at the surfaces of a control volume while avoiding 
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% t? 
where Se+, S ,’ , S; , and S; are source terms written as 
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w e S,l'=-$~j-,+(~-b,)~i~,+(~-b,)~i-b,~i+, 

(31 
FIG. 1. One-dimensional, uniform, staggered grid showing the nodes S,=-$~i+z+(3/4-bI)~,+*+(~-b*)~j-b3~j~, ‘I’ 

involved in the evaluation of 4 at the east (e) and west (w) surfaces of a 
control volume or cell centered at node i. S,~=(-~-U,)dj+l+(~-U,)~j+(~-U,)~i~*. 

high convection rate instabilities. We would, furthermore, The “a” and “b” column entries in Table I show the values 

like to do this with a consistently derived version of determined and used for these coefficients in earlier studies. 

QUICK. This is achieved by subjecting the final deter- By contrast, the last row consisting of O’s and l’s, 

mination of the weighting coefficients in the scheme to the corresponds to the values obtained in this study. Their 

observance of some specific rules, as opposed to the rather determination is the subject of the next section. 

ad hoc numerical explorations and tests that have been 
performed in the past to determine these coefficients. 2.2. Consistent Determination of the QUICK 

Scheme Coefficients 

2. OPTIMIZATION OF THE QUICK 
SCHEME FORMULATION 

In the absence of any source terms and using central 
differencing for the diffusion term, the one-dimensional, 
steady-state, convective-diffusion difference equation for the 

2.1. Generalization of QUICK 
quantity 4 obtained via a finite-volume approach is readily 
shown to be 

All QUICK scheme expressions communicated in the 
literature derive from Leonard’s original form given by cf.,+ +F,)4,-(F: +F,)QL. 
Eq. ( 1). In these expressions some terms are evaluated using 
previously calculated values in the iteration process and are = DAdi+ 1 - 4,) - Dw(4i - 4iL I L 

referred to as “source terms.” A generalization of Eq. ( 1) can 
be postulated, by stating that: 

where 

F+ = PUe (ue>O) 
{ 

F-= 0 (u,>O) 
e 0 (u,<O)’ E i PUf? (4 G 0)’ 

D, = ~el4., D,v = I-, /Ax,,,. 

(4) 

etc. 

(5) 

(2) Substitution of Eqs. (2) and (3) into Eq. (4) and rearranging 
terms gives an equation for the quantity 4i in terms of its 
neighbors, 

BP4i= BE4i+ I + BWdi- 1 + s2 (6) 

TABLE I 

Values of “a” and “b” Coefficients Used in Various QUICK Schemes 

Coefficients Rules 

Leschziner (1980) 
Hanetal.(1981) 
Pollard and Siu (1982) 
Freitas et al. (1985) 
Present work 

a, a2 a3 b, bz b3 RI R2 R3 R4 R5 
-$ 6 

8 i t i 0 P P Y N P 
0 $ 

4 
8 3 i 0 N P Y N P 

I 
8 a -Q I -g 0 N Y Y Y N 

-$ 6 
8 -Q t i 0 N Y Y N N 

0 1 0 1 0 0 Y Y Y Y Y 

Note. Level of rule satisfaction: Y (yes); N (no); P (partly). 
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where 

B,=a,F,++b,F,-b,F,+-a,F;+(D,+D,) 

BE= -a,F,+ -blF, +b,F: +a,F; +D, 

B,= -a,F: -b,F,+b,F,+ +a,F; +D,, 
(7) 

S=-S:F,f-S,F,+S:F,f+S,F,. 

Note that B, can also be written 

B,=B,+B,+Bo, (8) 

where 

B. = (a, + a2 + ax) F,f + (b, + b, + b3) F; 

- (b, + b, + b,) F,+ - (a, + a, + ax) F; . 

The Rules for Evaluating the “a” and “b” Coefficients 

The solution of the finite difference equations corre- 
sponding to Eq. (6) in this and the studies by Han et al. [3], 
Pollard and Siu [4] and Leschziner [2] are based on the 
SIMPLE algorithm (or a variation of this algorithm, like 
SIMPLER) documented by Pantankar [ll]. For a 2D 
flow, the x- and y-velocity components are solved line-by- 
line assuming a fixed pressure field. After sweeping the entire 
solution domain the pressure field is adjusted to ensure the 
satisfaction of continuity along every line of cells. This 
destroys the compliance of the velocity and pressure fields 
with the momentum equations. Thus, it is necessary to 
iterature upon the momentum and continuity equations 
until they are simultaneously satisfied to the accuracy 
required. 

Four rules, given by Patankar [ 111, ensure the stable 
convergence of a finite-volume-based algorithm towards a 
physically realistic numerical solution. These are: 

RULE 1. Consistency of surface flux calculations at the 
control volume faces. 

This rule requires that the value of the flux of a quantity 
d across a control volume surface be independent of the side 
of the surface from which the flux is evaluated. Thus, the flux 
that leaves a given control volume through a particular sur- 
face must be identical to the flux that enters the adjacent 
control volume sharing that surface. 

Assuming incompressible one-dimensional flow, this rule 
requires that: 

(4e)i = (4w)it 17 (9) 

where i and i + 1 refer to the nodes with respect to which 4, 
and dW, are respectively evaluated. Applying Eq. (9) to 
Eqs. (2) and (3) yields 

Column “RI” in Table I shows that all previous QUICK 
scheme formulations failed to rigorously satisfy this 
constraint. 

RULE 2. All coefficients positive in the discretization 
equation. 

As illustrated in Eq. (6), the balance of 4 at a grid point 
i (4,) is influenced by the values of 4 at the adjacent 
locations (fji+ i and dip i). When the transport of 4 is by 
convection and diffusion alone, an increase in the value of 4 
at one grid point should lead to an increase in the value of 
4 at a neighboring grid point. Thus, an increase in #,-, (or 
4, + i) must lead to an increase in di and, therefore, it follows 
that the coefficients B,, B,, and B, must all have the same 
sign; in the present case chosen to be positive: 

B,bO, B,>O, B,aO. (11) 

Applying the inequality expressed in Eq. (11) to the expres- 
sion given by Eq. (7) yields 

a, 6b,, a22b2, a,<b,. (12) 

The source terms in iterative solution procedures are 
evaluated using values from the former iteration step. In 
analogy with the time dependent calculation, the positive 
coefficient condition should also apply to coefficients in the 
source terms. Unfortunately, it can be shown that there do 
not exist a set of coefficients which simultaneously satisfy 
expressions (12) and the additional constraint for the source 
terms. 

RULE 3. Negative-slope linearization of the source 
term. 

In the presence of sources a more general form of Eq. (8) 
is (Pantankar [ 111) 

B,=B,+B,+Bo-S,. (13) 

To avoid the possibility that B, < 0 due to a large positive 
S, (and, as a result, violate Rule 2), Rule 3 requires that 
when a source term is linearized according to S = S, + S,bi, 
the coefficient S, should be S, Q 0. Because the lineariza- 
tion of the source term, S, does not depend on the particular 
differencing schemes used for convection or diffusion, 
Rule 3 can be satisfied for all schemes and, therefore, plays 
no immediate role in determining the coefficients of interest. 

RULE 4. Node coefficient equal to the sum of neigh- 
boring node coefficients. 

This rule stipulates that 

a, =O, a2=bl, a3=b2, O=b,. (10) B,=B,+B, (14) 
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and is a consequence of requiring that both 4 and 4 + C, 
where C is a constant, should satisfy the finite difference 
approximation of the differential transport equation. The 
rule can be strictly enforced only when derivatives of 4 alone 
appear in the original transport equation. For example, the 
presence of a source term that depends on 4 disallows the 
rule. Notwithstanding, requiring that Eq. (14) be satisfied 
by a differencing scheme is important for generating physi- 
cally meaningful results. Applying Eq. (14) to Eq. (8) yields 

a, + 4 + a3 = b, + b, + b,. (15) 

RULE 5. Constraints on the summations of coefficients. 

Rules l-4 translate into the constraints given by 
Eqs. (lo), (12), and (15) for the coefficients of a generalized 
QUICK formulation. Combining these relations yields 

a,=0 

a,=b,>O 

a,=b,<O 

b, = 0. 

(16) 

We now impose an additional requirement for the QUICK 
representation. This is that 4, and $w should be expressible 
in terms of weighted values of the neighboring #‘s and the 
remaining source terms according to 

i aj= 1, a, 3 0 
j= 1 

i b,= 1, 
(17) 

b,>O. 
j= I 

Together with Eqs. (16) these additional constraints yield 
an unambiguous determination of the coefficients as 
follows: 

a, =0 

a,=b,=l 

a,=b,=O 

b,=O. 

(18) 

Thus, the corresponding expressions for Eqs. (2) are 

u, > 0, u, > 0, 

u,<o, u,<o, 

#,=#;+I 

where the source terms are in parentheses. 
This form of the QUICK formulation has a very simple 

structure; the value of 0 is given as the sum of an upwind 
estimation with correction source terms. In addition to 
listing the “a” and “b” coefficients used in earlier works, 
Table I shows the compliance of the various QUICK 
schemes proposed with respect to the rules constraining 
these coefficients. Of all the schemes, only the present 
QUICK formulation satisfies all five constraints. However, 
this does not mean that the present formulation is the only 
possible choice of a QUICK scheme. It may be possible to 
find other equally accurate formulations which satisfy the 
rules invoked here but which do not comply with the 
general form given by Eq. (2). For example, Thompson and 
Ferziger [ 121 have mentioned a possible “defect-correction 
procedure,” where QUICK is written as the sum of the first- 
order power law method and remaining source terms. The 
present QUICK formulation, on the other hand, yields a 
defect-correction scheme based on the upwind difference 
approximation. Among the possible formulations, however, 
the present QUICK scheme formulation yields the simplest 
algebraic form. 

3. TEST CALCULATIONS FOR WALL-DRIVEN 
SQUARE ENCLOSURE FLOW 

Numerical calculations were performed for the 2D 
wall-driven square enclosure flow configuration previously 
investigated by Han et al. [3], Pollard and Siu [4] and 
Freitas et al. [S] using their respective QUICK schemes 
and the formulation proposed here. The calculations were 
conducted as explained by Han et al. except for the 
following: (a) The SIMPLER algorithm was used in place 
of SIMPLE (see Patankar [ 111) to calculate pressure and 
update velocities; (b) The MS1 method of Schneider and 
Zedan [ 131 was used in place of the Thomas algorithm to 
solve the algebraic system of finite difference equations; 
(c) Calculations were performed assuming steady state 
flow and the false transient approach of Han et al. was not 
used to stabilize the computations. However, converged 
solutions could not be obtained for Re = lo4 on grids finer 
than 40 x 40 nodes.’ To achieve stable, converged solutions 
on line grids at high Re, it was necessary to retain the 

’ Pollard and Siu 141 obtained a steady solution of the wall-driven 
enclosure flow for Re = lo5 on a coarse 10 x 10 grid. A steady solution was 
also obtained with the present QUICK formulation for the same condi- 
tions, but cannot be expected to be accurate due to the extremely coarse 
resolution of the grid. 
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Wall 

0 h h$ 5h 
F 2 
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4 I / I I I I I 
0 $- h 2h 

FIG. 2. Second- and third-order representations near the enclosure 
boundaries: 0, main (scalar) grid point; x, staggered (velocity) grid 
point. First: q$ is parallel to wall; evaluation of 4,,; a,, <O, #,3,2,h+ 

6(3&,* - 2dO,2,h -9c5,2d (QUICK); uh>O, ~hiZ+f(d~3,2~h-~hlZ) (2nd 
order), QhjZ + f(43j21h - q&) (3rd order). Second: 4 is perpendicular to wall; 
evaluation of Qhj2; uh/z <‘A 4,, + i(34, - 29h - h) (QUICK); Q/Z ’ 0, 
q& + f(d, - q$) (2nd order), q& + g( -54, + 6#,, - OZh) (3rd order). Source 
terms are in parentheses. 

unsteady terms in the momentum equations. These terms 
were approximated using an Euler implicit difference 
scheme. Constant property laminar flows were assumed for 
the Reynolds numbers investigated ranging from lo2 to 104. 
The Reynolds number is defined by Re = LU/v, where L is 
the length of the square enclosure side wall, U is the speed 
of the sliding wall, and v is the fluid kinematic viscosity. 
In the following discussion, all variables are non-dimen- 
sionalized using L, U, and p, the fluid density. 

The grids used were evenly spaced and consisted of 
10 x 10, 20 x 20, 40 x 40, or 80 x 80 nodes. Each calculation 
was terminated when the residual E became smaller than 
s0 = 1 x lo-‘, where E is defined as the maximum value of 
the residuals for the mass, u-momentum and u-momentum 
conservation equations. 

The general form of the QUICK scheme formulation may 
not apply for cells adjacent to walls depending on the 
flow direction. This is because the scheme may require a 
value outside the calculation domain (see Fig. 1). The 
modification of the QUICK scheme near boundary cells is 
given by Leonard [14]. However, because a third-order 
boundary treatment2 sometimes causes instability [S], the 
second-order boundary treatment persists in QUICK-based 
solution procedures [6]. In the present work, Leonard’s 

* In this paper, the order of each discretization scheme corresponds to 
the order of the leading error term in the Taylor series; therefore, the 
QUICK, central, and upwind difference schemes are third-, second-, and 
first-order accurate, respectively. 

third-order scheme is rewritten as the sum of the upwind 
evaluation and the remaining source terms, in the same 
way as the QUICK formulation. Figure 2 illustrates second- 
and third-order formulations which apply at the boundary 
cells. A comparison between the second- and third-order 
boundary representations was performed and is discussed 
further below. 

3.1. Comparison Among QUICK, CENTRAL, 
and HYBRID Schemes 

Higher order finite difference schemes generally are less 
stable than lower order schemes and, therefore, can require 
more computational effort to generate acceptable numerical 
solutions. Comparisons of different QUICK scheme for- 
mulations with the second-order central difference scheme 
(CENTRAL) and the first-order upwind difference scheme 
(when combined with the CENTRAL scheme this is 
referred to as the HYBRID scheme) have been performed 
by Han et al. and Pollard and Siu for the wall-driven 
enclosure flow, and by Leschziner for other recirculating 
flows. However, all of these authors employed second-order 
accurate finite-difference boundary conditions and their 
calculations were limited to Red 1000 by the instability 
characteristics of their numerically encoded QUICK for- 
mulations. 

In this section, the QUICK scheme formulation with 
third-order boundary condition treatment is compared 
with the CENTRAL and HYBRID schemes for Reynolds 
numbers up to 104. In addition, the effect of using a second- 
order representation for the boundary cells is discussed for 
the QUICK scheme. 

Because central differencing is used to represent the 
diffusion transport terms in all the schemes, the labels 
“QUICK,” “CENTRAL,” and “HYBRID” (throughout the 
entire paper) refer to the convective differencing practices. 

It is known that central difference approximations for 
the convection transport terms result in inappropriate dif- 
ference equations for convection dominated flows. To avoid 
this problem, the central difference scheme employed here is 
formulated in the same way as the QUICK scheme; see the 
Appendix. 

The Effect of Reynolds Number 

Centerline velocity profiles for the u (x-direction) and v 
(y-direction) velocity components in a wall-driven square 
enclosure are shown in Fig. 3ac for Re = 102, 103, and 104. 
Each figure provides a coarse (20 x 20) grid comparison 
among the three differencing schemes. Also shown are the 
results obtained with QUICK on an (80 x 80) grid and the 
results calculated by Ghia et al. [7] on finer (129 x 129 or 
257 x 257) grids as the standards for comparison. The 
profiles plotted in Fig. 3a, for Re = 102, show that on a 
20 x 20 grid all three schemes closely approach the line grid 
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FIG. 3. Non-dimensional horizontal (u) and vertical (u) velocity component profiles along the vertical (y) and horizontal (x) centerlines of a wall- 
driven square enclosure flow. (a) Re = 10’; (b) Re = 10’; (c) Re = 104. 

solution. However, for Re = lo3 the coarse grid profiles and the predicted strength of the primary vortex is 
already reveal differences among the schemes and at significantly less. However, in spite of its imperfections, the 
Re = lo4 the differences are quite significant, especially with 20 x 20 QUICK scheme solution reproduces surprisingly 
respect to the fine grid results. faithfully all the qualitative features appearing on the finer 

The extent of the disagreement among schemes appears 80 x 80 grid. 
even more clearly in the streamline patterns compared in 
Figs. 4a-d. Both the HYBRID and CENTRAL difference 
scheme calculations on a 20 x 20 grid fail to reproduce the The Effect of Grid Refinement 

full qualitative detail revealed by the 80 x 80 QUICK An exploration of the influence of grid refinement was 
scheme calculations; recirculation regions have been lost performed for the case of Re = lo3 in the wall-driven 
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FIG. 4. Calculated streamlines for the wall-driven square enclosure flow with Re = 10“; comparison of three schemes ((a) HYBRID; (b) CENTRAL; 
(c)QUICK) on a coarse (20 x 20) grid with QUICK (d) on an 80 x 80 grid. 

enclosure flow. Figure 5 shows the value of the stream A further example of the solution degradation as a result of 
function, $,, at the center of the primary vortex plotted low-order boundary treatment is provided in Fig. 6. This 
as a function of the grid refinement, m, in each coordinate compares centerline velocity profiles on a 40 x 40 grid 
direction. The value of $, is commonly used as a sensitivity with Re = lo4 and shows that the superiority of QUICK 
measure of the accuracy of solutions. For a given grid refine- over CENTRAL is quickly degraded when a second-order 
ment, these results quantify the extent to which a higher accurate boundary treatment is employed. 
order scheme outperforms a lower order one. For example, 
a 20 x 20 grid with QUICK is equivalent to a 40 x 40 grid 
with CENTRAL and an 80 x 80 grid with HYBRID. 

The dotted line in Fig. 5 corresponds to the QUICK 

3.2. Relative Evaluation of QUICK 
Scheme Formulations 

scheme using a second-order boundary condition treatment Having ascertained that the present formulation of the 
(see .Fig. 2). The reduced accuracy at the boundary QUICK scheme yields correct and more accurate solutions 
significantly reduces the overall accuracy of the solution. for the wall-driven enclosure flow than lower order schemes, 
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Scheme 

0 Present QUICK (3rd) 

E, QUICK (2nd) 

0 CENTRAL 

A HYBRID 

n Ghia CENTRAL 

W Thompson CENTRAL 

1 

10 20 40 100 
m 

FIG. 5. The value of the stream function at the center of the primary 
vortex, I),, as a function of the grid refinement, rn, in each coordinate 
direction; Re = lo3 in the wall-driven enclosure flow. 

we have proceeded with its evaluation relative to the earlier 
formulations by Leschziner [2], Han et al. [3], Pollard and 
Siu [4], and Freitas et al. [IS]. Since all of these formula- 
tions derive from Leonard’s formulation (see Eq. ( 1 )), their 
converged solutions are identical. As a result, possible 

0 100 200 300 

Iteration n 

FIG. 6. Non-dimensional a- and v-velocity profiles along the vertical FIG. 7. Variation of the residual, E, with iteration number, n for the 
and horizontal centerlines of a wall-driven square enclosure flow with QUICK scheme formulations compared. The optimum value of the 
Re = 104; relative comparison among second- and third-order boundary under-relaxation factor, tl,rtr was used for each scheme and is given 
treatments using the QUICK scheme and the CENTRAL scheme on in parentheses. All calculations were performed on a 20 x 20 grid for a 
40 x 40 grids. wall-driven square enclosure flow with Re = 10”. 

differences among the formulations will be due to their 
respective stability characteristics. 

In general, a stable procedure allows the use of a large 
under-relaxation factor at each iteration step, resulting in 
fast convergence to the solution. In this section the perfor- 
mance of the various QUICK scheme formulations was 
systematically examined for the wall-driven enclosure flow 
on 10 x 10, 20 x 20, and 40 x 40 grids for Reynolds number 
ranging from lo* to 104. Every calculation based on the 
SIMPLER method with the third-order boundary treat- 
ment was performed using zero initial conditions for all the 
dependent variables (u, u, p). Figure 7 shows the calculated 
rates of change of the residual E on a 20 x 20 grid with 
Re = 103. These plots represent the best performances 
obtained with the corresponding optimum underrelaxation 
factors, c+ ( h s own between parentheses), set for each 
QUICK scheme formulation. The plots show that the 
present version of QUICK outperforms all previous for- 
mulations. In particular, the version of QUICK proposed 
by Pollard and Siu [4] yields extremely slow reductions of 
the residuals with increasing iteration number. 

Values of the optimum under-relaxation factor were 
determined through the type of calculations shown in Fig. 8. 
For each QUICK scheme formulation, the number of 
iterations required to achieve convergence on a given grid 

- Present (0.8) 

._.. Leschziner (0.8) 

_____ Han et al. (0.3) 

- -. Fkeitas et al. (0.6) 

Pollard and SIU (D., 
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was plotted as a function of the under-relaxation factor, c(. 
The optimum under-relaxation factor, G+, is defined as the 
value of c1 which corresponds to the minimum number of 
iterations. The figure shows the superiority of the present 
scheme and that of Leschziner over the remainder which are 
much more sensitive to variations of the under-relaxation 
factor. The value of cl,+ was determined numerically and 
its variation with Re on a 20 x 20 grid is plotted in Fig. 9a 
for each QUICK scheme formulation. The figure shows that 
for Re > 10’ the under-relaxation factors for the non- 
optimized QUICK schemes must be substantially reduced 
as Re is increased in order to maintain calculation stability. 
By contrast, the present version of QUICK allows high 
values of uopt over the whole range of Re explored. The 
corresponding number of iterations required to achieve a 
converged solution is plotted as a function of the Reynolds 
number in Fig. 9b. The result again shows the much better 
performance of the present formulation. 

The next comparison was made among the QUICK 
scheme formulations with the Reynolds number fixed 
(Re = 103) using three different grids of 10 x lo,20 x 20, and 
40 x 40 nodes. Figure 10a shows that the present QUICK 
scheme allows high values of uopt and that this is relatively 
insensitive to the grid size. 

The variation of iteration number required to achieve 
convergence as a function of grid refinement is shown in 
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FIG. 8. Number of iterations, ncr required to achieve convergence 
(E < 1 x lo-‘) as a function of the under-relaxation factor a; comparison 
among QUICK formulations on a 20 x 20 grid for a wall-driven square 
enclosure flow with Re= 10’. In the plot, symbols denote converged 
calculations while the right-hand ends of the curves plotted through the 
symbols denote unconverged calculations. 
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FIG. 9. Effect of Reynolds number on the performance of each 
QUICK scheme formulation for a wall-driven square enclosure flow on a 
20 x 20 grid: (a) variation of the optimum under-relaxation factor, Al,,,,, 
with Re. (b) variation of iteration number to convergence, tic, with Re. 

Fig. lob. This plot also reveals the contrast between the 
present QUICK scheme and Leschziner’s version with 
respect to the other schemes. The number of iterations for 
the former is independent of the grid refinement, while it 
increases monotonically with grid refinement for the latter. 
The above results reveal the predominant stability and 
robustness, i.e., insensitivity to parameter variation, of 
the solution procedure with the present QUICK scheme 
formulation. 
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FIG. 10. Effect of the grid refinement, m, in one direction on the 
performance of each QUICK scheme formulation for the wall-driven 
square enclosure flow with Re = 103; (a) variation of the optimum under- 
relaxation factor, aoPt, with grid refinement, WI; (b) variation of iteration 
number to convergence, n,., with grid refinement, tn. 

CON’CLUSION 

This study places on firm ground a method for con- 
sistently deriving an improved formulation of the QUICK 
scheme which was previously lacking. Consistency is 
achieved by reference to live rules that guarantee physically 
realistic and stable numerical solutions of finite volume- 
approximated conservation equations for mass and 

momentum. Although not exhaustive, extensive testing of 
the new QUICK scheme in a complex elliptic flow with 
strong streamline-to-grid skewness shows that the new for- 
mulation is much more robust and converges considerably 
faster than all previous formulations. 

The comparison among schemes performed in this study 
reveals the superiority of QUICK when employed with a 
third-order accurate boundary condition treatment, espe- 
cially at high Reynolds number. Earlier testing performed 
by Han et al. [3], using a formulation of QUICK with a 
weighting of coefficients that does not fully satisfy the set of 
rules proposed here for fast and stable convergence, shows 
that the scheme accurately resolves the viscous dominated 
region in a stagnation point flow. Notwithstanding, the 
boundary condition treatment developed in this work 
represents an improvement over that used by Han et al., 
since it retains the third-order accuracy of the scheme all the 
way to the wall. 

In concluding, we note that the methodology outlined 
here, using Rules 1 to 5 in the text to derive a consistent 
version of the QUICK scheme, can also be applied to derive 
corresponding consistent versions of discretization schemes 
of any order. 

APPENDIX: FORMULATION OF 
CENTRAL DIFFERENCE SCHEME 

In this scheme, control volume surface values for 4 are 
obtained as the mean of the values at the two nodes on 
either side of the surface (see Fig. 1). 

641) 

It is known that the direct implementation of the above 
expression induces instability, see Patankar [ 111. To relieve 
this, Eq. (Al) are rewritten in the same form as Eqs. (2) and 
(3). That is, 

where, S,+ , S ,’ , S; , S ; are source terms defined as 

s,t = -aldi-,+(1/2-a*)~,+(1/2-a,)~,+, 

s;=(1/2-6,)~,~,+(1/2-b,)~i-h,~i+, 

sT = -b3$i-l + (1/2-b2) @i+ (1/2-bl) 4r+l 

(A3) 

s,=(1/2-a,)~i~,+(1/2-a*)~,-a,~i+,. 
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The coefficients ai and bi (i = 1, 2, 3) are determined 
applying the rules (Rl)-(R5) as 

a, =o, a*= 1, a,=0 
(A41 

b, = 1, b,=O, 6, = 0. 

This formulation has been employed as the central dif- 
ference scheme for convection terms. The resultant solution 
procedure revealed significantly enhanced stability. It is 
noted that this central difference formulation of the 
convection term is essentially that used by Ghia et al. [7]. 

ACKNOWLEDGMENTS 

Partial funding for this work was provided by the University Energy 
Research Group of the University of California and the Institute for 
Scientific Computing Research at the Lawrence Livermore National 
Laboratory (University of California). We are grateful to these two 
agencies for their support and to the CRAY Corporation for the computing 
time required to perform the study on the Berkeley campus. Many thanks 
go to Ms. Janet Christian for the preparation of this paper. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

REFERENCES 

B. P. Leonard, Comput. Methods Appl. Mech. Eng. 19, 59 (1979). 

M. A. Leschziner, Comput. Melhods Appl. Mech. Eng. 23, 293 (1980). 

T. Han, J. A. C. Humphrey, and B. E. Launder, Compul. Methods Appl. 
Mech. Eng. 29, 81 (1981). 

A. Pollard and A. L. W. Siu, Comput. Methods Appl. Mech. Eng. 35,293 
(1982). 

C. J. Freitas, R. L. Street, A. N. Findikakis, and J. R. Koseff, Int. J. 
Numer. Methods Fluids 5, 561 (1985). 

C. Y. Perng and R. L. Street, Int. J. Numer. Methods Fluids 9, 341 
(1989). 

U. Ghia, K. N. Ghia, and C. T. Shin, J. Comput. Phys. 48, 387 (1982). 

R. Schreiber and H. B. Keller, J. Compuf. Phys. 49, 310 (1983). 

Y. Choi, J. A. C. Humphrey, and F. S. Sherman, J. Comput. Phys. 75, 
359 (1988). 

J. Koseff and R. L. Street, J. Fluids Eng. 106, 21 (1984). 

S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, 
Washington, DC/New York, 1980). 

M. C. Thompson and J. H. Ferziger, J. Comput. Phys. 82, 94 (1989). 

G. E. Schneider and M. Zedan, Numer. Hear Transfer 4, 1 (1981). 

B. P. Leonard, in Proceedings, 5th Inl. Conf: on Numerical Methorls in 
Laminar and Turbulent Flows, 1987, edited by C. Taylor et al. 
(Pineridge Press, Swansea, UK, 1987), p. 35. 


